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I. I n t rod u c t ion

There are several well-known methods for the
determination of' the thermal conductivity of
poorly conducting building materials like wall-
board, light-weight cement, bagasse-board, etc.,
whose conductivities are in the range of I X 10-3

to 0.1 X 10-3 C.G.S. units (cal sec-" cm-r/oC.).
Of the various methods, Lees and Chorlton's
disc method! is perhaps the simplest and easiest
to set up and manipulate. The method essentially
consists in placing a thin disc of radius 'R' of the
sample between a freely-suspended brass disc
and a steam chest of the same diameter as the
sample (Fig. I), and then measuring the equili-
brium temperature 6b attained by the brass
disc.

The thermal conductivity K of the sample is
obtained by assuming that the peripheral surface
is small and a uniform temperature gradient
exists across the thickness of the sample disc
(cf. Fig. za). On this basis, the heat flowing
per unit time across the faces of the sample disc
of thickness 'd' is

6s_6bH =Kexpt -d X 7tR 2

TH~,.MO COUPLE

~ STEAM

':,!-.-- SAMPLE

kl1lli2its~~--BRASS DISC

Fig. 1.-Sketch of the experimental arrangement in Lees and
Chorlton's disc method for measurement of thermal conductivity
.of poor conductors.

and this is equated to the heat lost by the brass
disc to the surrounding atmosphere (at tem-
perature (3), which caT!be put equal to

( r b)

where db is thickness of the brass disc, and
Eb is a constant according to Newton's law of
cooling. However, the application of equations
(I) is handicapped by the fact that most of the
above-mentioned building materials are only
available in fair thicknesses, of the order of 0.5 em.
to 2 cm., and therefore a very considerable loss
of heat occurs from the peripheral exposed surface
of the specimen. For a sample disc 10 cm. in
diameter and I ern. thick, this peripheral surface
has an area of over 30 sq. cm., which is almost
one half the area of the surface across which the
conduction of heat occurs. It is therefore of great
importance to derive a correction for this peri-
pheralloss.

2. The Basic Pattern of Heat-Flow

( ra)
The calculation for this effect can be made

fairly simply, provided the conditions are such
that the peripheral loss is smaller than the heat
flowing across the sample face in contact with the
brass disc. When this condition is satisfied, we
can" consider the phenomenon as being essentially
one of rectilinear conduction with a small super-
posed distortion of the lines of heat flow caused
by the peripheral heat loss. The nature of this
distortion is readily found if we remember that
unit area on the periphery of the sample disc
loses heat to the surroundings at the rate of
E(6-63), where 6 is the temperature of the
area considered and E is a constant according to
Newton's law of cooling. This quantity of heat
must naturally flow outwards by conduction from
just inside the periphery. The actual heat flow
near the periphery is thus the resultant of this
outward flow and the normal conduction flow
parallel to the axis, whence it follows that the
actual lines of flow will be inclined outwards
from the axis. Also, at points far from the peri-
phery of the sample disc, the lines of flow will be
practically axial, so that the inclination of the
lines of flow is a function of the distance from the
axis of the disc.
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Fig, 2,-Lines of heat flow through the sample disc, assuming (a) ideal case of no peripheral loss,
and (b) significant peripheral loss.

I t is shown in Appendix I that this
inclination is appreciable only within a distance
d/y"'2 from the periphery of a disc of thickness 'd'.
The ideal and the actual lines of flow are shown
schematically in Figs. za and zb, wherein all the
lines of flow are parallel to the axis in the im-
mediate neighbourhood of either face of the
sample in consequence of the temperature uni-
formity imposed by the brass disc and the steam-
chest. It is seen that only the heat flowing into a
circle of radius (R-~ R) flows out at the bottom
of the sample, while the heat flowing into the
annulus between radii R and R.~ R ultimately
flows out at the periphery of the sample. This
feature enables us to calculate the corrections
to be made for the peripheral loss. The correction
consists of two components: (a) the peripheral
loss as such, and (b) the discrepancy caused by
the increased length of the tubes of flow due to
their inclination to the axis.

3. Derivation of the Correction ForlDula

Figure 3a shows an enlarged view of a typical
tube of flow, and, if we neglect the small cur-
vature near either face of the sample, this tube
can be replaced to a sufficient accuracy by the
inclined straight lines of Fig. 3b, in which the
undistorted axial flow is shown by the vertical
broken lines. If the area intercepted by the
inclined tube on the median plane XY is 8A, then
the mean cross-sectional area of this tube is 8A

Fig. 3.-Enlarged views of inclined tubes of heat flow (a)
exact shape, and (b) approximation suitable for calculations.

x cas cp and its length is d see cp, where cp is the
inclination. Therefore the quantity of heat, 8H,
flowing per unit time through this tube is given by

oA cos cp K
oH = K(6s·6b) d sec cp d-(6s.0b) X oA cos- cp

K
= d (fls-Ilb) X oA/(r + o2/d2), (2)-

where Os is the temperature of steam, 0 b is the
temperature of brass disc, K is the thermal
conductivity of the sample, and o=d tan cp is the
displacement of one end of the tube of flow relative
to the other. It follows that the total heat H
flowing out at the bottom of the sample is

H = ~ oH = ~ (Os-Ob)~ oA/(I+o2/d2)

K ( R-~~R
=cr (Os-6b) ) 0 21trdr/(I+82/d2), (3)

where the upper limit of integration is determined
by the fact that only the heat flowing upto the
inclined line CE in Fig. zb emerges at the lower
face of the sample. Now it is shown in Appendix I

that o/dis zero for r < (R- ~R - 'd/y2), and fbr
2

larger r is proportional to [ r- (R- :R -,J;) ]
'. ~R ~RWIth a maximum value of - at r= R- -- (cf.

d 2

Fig. eb), Thus if we put ro=(R - ~R~,~),then;
2 y2

we have for r > ro,
r-ro ~R

8/d= <f/V'2'XT'
and I /d2 = 1_82/d2 + 04/d4••..•.•.......

1+82

= 1-'2 ( ~I~) 2 ( ~: ) 2 +4 ( r;o ) 4 ( ~dR) 4
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K 7<(R2_(R-t.R)2)(_~) ax x e o

(5) = 27<RKxt.R (I_t.R)( 6s-6b +~_ ~!)
2R v'd2+(t.R)2 2 ax2

where 6a is the ambient temperature and e is the K (t.R) ( Os-6b
mean temperature of the peripheral surface. R t.R I
This mean temperature will be somewhat less =27< d -2R VI+(t.R/d)2
than t (6s+ 6b) because the temperature dis- ' d- a26)
tribution is not truly linear, but is changed by the +- -

2 ax2
surface loss into the form shown in Fig. 4. As-
suming a linear variation of aO/ax (which is
dose to the truth), we may put

Substitution of this expression into equation (3)
gives to sufficient accuracy

H=K 6~6~ [ ~ :-~~~dr- ~ :-!4~~( r~ro) 2

x ( t.dR) 2 dr ]

= K (6s-6b) 7<~2[ ( 1- i:)2_( ~ ) 2

X(~2 ~o + i) ]
~. K (6s-6b) 7<:2 ( 1 - t:) (I- ::

_ t.: X t.dR
X ~2) (4)

It remains now to obtain an estimate of the
quantity t.R. We notice from Fig. zb that all
the flow lines to the left of the line EC terminate
on the periphery of the sample disc, which means
that all the heat flowing in at the annulus AE
of the disc is to be equated to the heat lost from
the periphery, which latter is given by

which integrates to

6b-6s a26
6= 6s+ -d-x +t ax2 x (x-d) (6a)

Thus the heat loss from the peripheral surface
of the sample becomes

27<RXd X E( t (6s+6b) - 6a -

9s

t
8

~

Ba
x=o x=«

Fig. 4.-Typical temperature distribution on the peripheral
surface of the sample.

while the heat flowing into the annulus AE IS

to a good approximation given by

(8)

On equating the two expressions (7) and (8),
and transposing, we get for the maximum incli-
nation of the flow lines

(9)

Since t.: is itself a small quantity, we can at

(6b)' fi I h II II .. t.R drst neg ect t e equa y sma quantities If' an

( d2 ::~)in the expression on the right-hand side

of equation (9), We thus get to a good approxi-
mation,
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~R E
cP mxx = d = d K a (Os+Ob) -OO(]/(Os-Ob)

Simplification of equation (4) and substitution
of the above expression for ~R now gives to a
sufficient accuracy

1tR2
H = K(Os -6b)-

d

X(I +~d(~ + 6b-
Oa)(£ _~))]2K 2 Os - 0b 1.5 2R

H d
and finally, K expt = -6-- X R2

S - 0b 1t

(I I a)

where fLis nearly constant and less than 0.1, cf.

Table 2. If the neglected quantities, ~Rand

a20
d2 _ ,are also taken into account, then we find

ax2

in Appendix II that the factor (l+fL) is to be
replaced by (l-fL '), where fL' is again nearly
constant and "" 0.1. 'fL(or (1.') and therefore
d2 redUced can be easily calculated provided we
have an approximate value of E, which can be got
from two experimental determinations of K with
different values of the thickness d. The formula
(I I) then gives us the desired relation between
the actual value of K and the experimentally
determined value. The correction to the
experimental value of K is seen to be inversely

(10)

proportional to the radius R of the sample and
approximately proportional to the square of its
thickness, d. This is as it should be, because
the dependence on d is two-fold, the peripheral
loss increases linearly with d, while the heat
conduction across the disc is inversely proportional

to d. The influence of the factors(~+ °b-
oa ) ~

2 Os-Ob
however, needs some elucidation.

4. Behaviour of the Correction Formula

Let us here examine the formula (r a) used for
calculating the value ofKexpt from the equilibrium
temperature, eb, of the brass disc, wherein it is
assumed that there is no peripheral heat loss
from the sample. Equations (I) give us

where E'b =, Eb (I + 2db/R).
It follows that

Substitution of this expression into equation (r rb)
gives

d2 redUced = ( I + (:'52
- 2!)

X (~ +dK~x,p:):~)(++ ]~~;Jxd2

=(1 + fL)(~ X K~~:t) x d (13at

(
,\,12 d ) (d Kexpt) E

where u-- ~·-2R "2+ ~ X2K

1 E
- 3 E'b

Finally we get from equation (I I a),

E(I+fL) (d Kexpt)Kexpt=K---R- d -+-E'
2 'b

Inclusion of the higher order terms neglected
in equation (IO) will as before result in the
replacement of v. by -fL', where fLand fL' are both
"" O. I.

For thin samples, i.e., when d is small, equation (14)
reduces to

•
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E d Kexpt (I + !_~)Kexpt = K - R E 'b 3 E' b

~ K(I - ~ X ~) (15)- R E b

-which shows that with the experimental arrange-
ment of Fig. I; the values ofK determined for thin

samples are too low by a factor Of( I - ~ X E~b)'

This is a direct consequence of the fact that even
for the thinnest samples, the maximum incli-
nation of the lines of heat-flow does not become
zero but rather tends to a constant value. From
equations (10) and (12), we have for the incli-
nation at the periphery

which is small in the practical examples discussed
below, but is never zero.

In order to study the variation of Kexpt with
the thickness d, we take the following typical
values for the constants in equation (14) :

K = 0-4 X 10 -3 (cal sec-! cm-1/°C), E=o.1
X 10-3, E'b=0·3 X 10,3, R = 5 cm.,

and if we take Kexpt r-J o.g, our relation becomes

approximately 1000 Kexpt=0.4- 0.1 d(j + 0'3)
5 2 0·3.

( (
d )(1 0.3) 0.1 d)

X I + 0'943 - 2 X 5, 2 + 0.3d X2 X 0-4

= 0·4 - 5: (1+ ~)( 1+( 0·943 -- -I~-)
X(0.125+ I~)}

The values got from this relation are shown in
Table I below together with the corresponding
values of d and d2• For small d, the change in
K is roughly proportional to d, while for large d,
the variation depends more nearly on d 2. If a
simple working formula is sought, it is probably
accurate enough to try the compromise

•

where 'a' will be of order ofthe

E (K RXE)! E- -, X--- "'--
R E'b E\ R.

Such a treatment of the calculated data of Table
I is shown in Fig. 5 in which the values
for d = 0 and 0.5 ern. are taken as unknown.
The extrapolation of the straight line to d2 =
o gives K = 0.406 X 10-3 (cal sec-! cm.-1/oC.),
which is within It % of the correct-value, so that
this simplified equation (16) should be acceptable
within the usual limits of experimental error for
K, i.e., about 0.01 X 10-3 or a little more.

5- Experhnental Verification

For experimental work, either this above
simplified technique or the more elaborate equa-
tion (I I) can be used. In order to estimate the
relative merits of the two procedures, an analysis
is presented for the results of a series of experiments
performed in this laboratory with "Celeron"
discs of different thicknesses from half an inch
upto almost two inches. Several discs 10 em,
in diameter were cut and accurately machined
out of a quarter-inch thick sheet of "Celeron,"
which is a variety of hard laminated insulating
material. Composite discs of various thicknesses
were made up out of these by putting together
2, 3, 4, etc., of these!" thick discs. The thermal
conductivity of these composite discs was deter-
mined with the apparatus of Fig. I by measuring
the equilibrium temperature of the brass disc in
each case. The mean results for two sets of
determinations are shown in Table 2 along with
other relevant data.

0·4 ,

\'
t 0·.1

.....••

~
:::.::.Q)

0·2
0 2 4 6

Fig.5.-Plot of typicaltheoreticalvaluesof Kexpt against
d 3/2 to showapproximatelinearity.
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TABLE I.-CALCULATED VARIATION OF KEXPT IN A TYPICAL CASE.

d (em.) 0 0.5 1.0 1.5 2.0 2.5 3.0

1000 X Kexpt 0.400 0.386 0.365 0.338 0.305 0265 0.220

d2(em.2) 0 0.25 1.00 2.25 4.00 6.25 9.00

TABLE 2.-ExPERIMENTAL DATA FOR" CELERON" DISCS UPTO 2 INCHES THICK.

"Celeron" Discs: R = 5.0 em. E'b for brass disc = 0.290 X 10-3

No. of 6b 6a I 6b_6a d dab-6 "'P' I d' l+tL d2 reduced d3/2

discs d {cm.] (0 c,)
( 0 c·) I t+6s-6b

_+ _ a
(cal sec-'lcm-l/Oe) (cm.2)2 6s-6b

I

2 1.27 65.7 29.8 1.55 1.<:17 0.406 ± 015 1.61 1.064 2.7 1.43

3 1.90 61.2 30.0 1.31 2.49 0.396 ± C08 3.60 I .075 5.1 2.62

4 2.54 54.0 29.0 1.05 2.67 0.384 ± .008 6.44 1.074 7.3 4.05

5 3.18 49.4 29.3 0.90 2.86 0.347 ± .007 10.10 1.07 I 9.7 5.66

6 3.81 44.6 28.2 0.80 3.05 0.313 ± .001 14.5 1.069 12.4 7.45

7 4.44 41.9 28.4 0.74 3.28 0.290 ± .006 19.7 1.066 15.5 9.35

Note :-Experimental values for One disc have been omitted because with our apparatus, the temperature, 6b, becomes so
high that the Newton's law of cooling is no longer accurately applicable to the heat lost by the brass disc.

o·s
/°.450

0·5

1 0·4

1.
q)

~
0·,]

°

t 0·4 +~+} ~

~ 0·;] +---r---~-;:.--rl--
o 5 10 IS ~

j 3/2~a _ ••

( a. )

Figure 6. Experimental graphs for "Celeron" discs upto 5 ern. thickness. The measured values (Kcxpt)
of theramal conductivity are plotted against (a) d2reduced, and (b) d3/2, and thus

extrapolated to zero sample thickness.
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First we try to fit to the experimental data, the
more accurate equations (I I), according to which
the graph for Kexpt against d2 reduced should
be a straight line. In order to calculate
d2 reduced, we require an approximate value of E
(cf. equation II (b)). This can be done by
assuming d2 reduced = d- in the first instance
and substituting two of the values from Table 2
into equation 1I (a). Thus

E
0-406 X ro-3 = K - It X x.61 1

~

J
E

0.290 X 10-3 = K - R X 19·7

whence E 0.116
- - X ro-3 =0.0064 X 10-3,R -I8:I

and therefore E = 5 X 0.0064 X 10-3=0.032 X 10-3

Eand - = 0.032/0.8 == 0.04.
2K

This enables us to calculate the factor (l+fl)
given in column 9 of Table 2 and finally
d2rcduccd, which is given in column 10. The
graph for Kexpt against d2 reduced is shown in
Fig. 6a, in which the short vertical lines through
the plotted points indicate their estimated standard
errors. The straight line drawn in the figure
is seen to fit the experimental points very well,
the deviations from the straight line being about
equal to the standard errors on the average.
This means that equation (1 I) holds within the
limits of experimental accuracy. The corrected
value of K found by extrapolation to d> reduced
= 0 is 0.450 X 10-3.

A further refinemen t is to get the accurate
value of E/R from the slope of the graph of Fig.
6a, and to recalculate the factor (I+fl) and
d2rcduccd with this accurate value. From the

E 0'160 .
graph, -R=--- - X 10-3,t.e., E=0'0'53 X 10-3,

15
E 0.053

whence -- = ' 0'059, which is to be com-
2K 2 xO'45

pared with the approximate value of 0.04 used
previously. Since ~·E/K enters only in the quantity,
fl, the values of d2 reducedcalculated with this
more accurate estimate of t ElK will be increased

by a factor(l+ 0'059 X IL)/(I+IL),where 11-,....,0·07.
0'040 -

It follows that the new values are all almost
exactly 1.03 times the old ones, so that the graph
wi1\ be similar to the previous one, but with the

abcissa expanded in this ratio. The value of K
extrapolated to d> reduced= 0 will therefore be
the same as before. Similar remarks apply to the
replacement of (1+11-) by (1-11- ') as a further
refinement (Appendix II).

For comparison with the foregoing process, we
show a plot 'of the values of Kexpt against d %
in Fig. 6b. The points can again be fitted by a
straight line within the limits of experimental
error, and the value of K obtained by extrapola-
tion to d = 0 is 0.443 X 10-3, which is lower
than the corrected value (got from Fig. 6a) by
0.007 X 10-3, i.e., by about 2%.

6. Exarrrpdes of Applications and Generali-
zation

We take as an illustration, the evaluation of the
correction for peripheral heat loss in a typical
case, namely that of a cellular cement disc 10 ern.
in diameter and 1.2 cm. thick, the density being
0'35 g.jml. For such a disc, the value obtained
experimentally with the apparatus of Fig. I was

K, = (Kexpt) d=I.2 = o- I 10 X IO-3±0'005 X 10-3
cal sec=t cm -l/oC.

Two .approaches are now possible. Firstly
we may proceed as with the "Celeron" discs, that
is, the experimental determination may be re-
peated with two such cement discs placed one
above the other (thus making a single disc of
twice the thickness). This gave a value of

With the help of the already tested equation (II),
and using the approximate value of 0.06 X 10-3
for E, together with the experimental values of
6b and 6a, we easily get for the correction to KI'

correction= (Kcorrect-Kr)
_ • KI-K2
-- [(d2red llcedh/d'2rcduCfdh]_I

= (0'013±0'004) X

0'023±0'007------':c.=;~--' X 10-3
(4'55/1.67)-1

10-3,

whence K corrected = 0.123 X 10-3 ± 0.007 X 10-3
cal sec-r cm.-I/OC, which is in good agreement
with the tabulated value of o. I4 X 10- 3 for cement
of the given specification.

Secondly we note that because the loss of heat
from the periphery of the sample is mostly due to
convection rather than radiation as such, the value
of the consta nt E in equation (5) will be in-
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dependent of the nature of the sample. There-
fore we can use the experimental value (got from
the data on "Celeron" discs) to calculate the
correction for any sample with the help of equa-
tions (II) or (14). Substitution of the values
for E, Eg , and R into equation (14) gives for our
apparatus,

Kexpt = K _ 0.053 X I .1 (~+Kexpt) d,
5000 2 0.29

= K _ 0.01 I6(_d + Kex~)' d, (17)
rooo 2 0.29

if we take (1+1-') as 1.1 which is quite accurate for
our work. * The only quantities needing measure-
ment are d and Kexpt for the sample disc.
Substitution of their values into the above equation
gives directly

6 (
1.2-+ 0.11)K = 0.110 X 10-3+0.01 I X ro-3 - ---

2 0.29

X 1.2
(0.110 + 0.014) X ro-3 = 0.I24X ro-3

cal secor cm.>! 1QC,

which is in excellent agreement with the previous
figure of 0.123 X ro-3. This agreement provides
experimental verification of the fact that, once
the apparatus has been calibrated with uniform
samples of various thicknesses, the correction for
peripheral loss can be directly calculated for an
unknown sample from a single determination of the
thermal conductivity to an accuracy of about
0.01 X ro-3 or better.
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Appendix I

The Variation of the Inclination, cf>; of the
Tubes of Flow

The precise value of this inclination will depend
on the radial distance, r, from the axis of the

*It shouldbe noted that when we determineE from the slope
of the graph of Fig.6 a, the value obtained includes any factors
that may be introduced by further refinementssueh asthoseof
Appendix II. Thus the replacementof (1 + I-' ) by (l-u') is
automaticallytakencareof.

----:---------
-~ I

R-AR ------~

Fig.7.-Successive approximationsto the inclination(cf» of
the lines of heat flowasa functionof the radialdistance. First
approximation:straightline OM; second approximation: two
straightlines,OF andFM; actual:curveOL M.

sample disc, and will be determined by the
boundary conditions, i.e., by the heat loss a~d the
temperature gradient on the peripheral surface.
An expression for the dependence of cp on r can
be obtained by successive approximations. Let
us assume at first that cp is proportional to r, i,e ...

cf> = oR cf> rnax, cf. the straight line OM in Fig. 7-

Since the isothermal surfaces are normal to the
. lines of flow, the equation of a section made by the
plane of the paper through the isothermal surface
for e'='i (as+6~) will be given by (cf. Figs. 3b & 7)

dx
-dr

r d
rl" ""--R cp m nx and (x) =--'r _ J r==o 2·== tan

whence x
d
2

and ~x= ({_-x) r2
- cf> max·

2 R
Thus the point on the periphery corresponding
to the temperature i (as + 6b) is shifted from the
middle (i.e., x=d/2) by a distance

I R2
(~x) max = 2R cp max = i R cp max =

R ~R,
(f'X 2

( I8a)

because cf> msx = ~R/d, cf. Fig. (2). Another
estimate of (~x) maX can be got by considering
the temperature distribution along the tube of
flow ECC' E' near the periphery (Fig. 2). For
this tube,

Corss-section at CC'
Cross-section at EE'

Now, for any tube, the temperature gradient 0610s is
inversely proportional to the cross-section, so that
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(ae/ax)E _ <?~oss-secti<?nat_C_q: _ I + 2 ~R
(ae/ax)C - Cross-sectionatEE' - R-'

h d R d~R (ae/ax)c - (ae/ax)E
w ence R X 2~ =2 R = _ ae/ax-

d2a28jax2
X d = ------ = 8 (~X)max, (I8b)

- ae/ax
1 a2e ae

because from Fig. 4 and equation (6a)'-8 d- -2=---ax ax
X (~X)max. The two estimates for (~x) rnax

can be brought into agreement only if
R = djy2, which suggests that the influence
of the peripheral loss does not extend all
the wav inside the disc but is appreciable only
to a distance of the order of djy2 inwards
from the periphery. This means that the incli-
nation, cp, will vary somewhat as shown by the
curve OLM in Fig. 7, instead of the straight line
OM as initially assumed. For the purposes of
calculating the integral of equation (3), a fairly
good approximation is got bv replacing this curve
by the two straight lines OF ( cp =0) and FM,
where the distance EF = d/a and a is to be
determined from the boundary conditions. Thus
the maximum displacement of the isothermal
for e = t (es+eb) is

(~x) d cp _~ X ~R =~R_ (19)
m ax 2a max - 2a d 2a

For the flow along the tube of flow near EC, we
have, analogously to equation (I8b), the result

2 [ ( d/ata~R ) -·1 J =2 ~~ =!(~x) m ax ,

whence (~x) = ~ X ~R (20)
max 4

By equating equations (19) and (20), we get
a i.e. a =Y2.

2a 4
Thus the distance EF = <! = dj,\/2.

~

Appendix II

Effect of Quantities Neglected in
Equation (10)

In order to obtain the departure from linearity
of the peripheral temperature distribution of the
sample disc, we must calculate the value of
(~x) max on the peripheral surface for the middle
isothermal, i.e., for a = t (as + ab). This iso-

thermal cuts the peripheral surface at x ~ ~- l
-2

and the line of flow through this intersection will
therefore originate near E", the middle of AE,

Figs. 2, 7, at distance~:inwards from the periphery.

To get the value of (~X)ll1ax for this line of flow,
we need the variation of cp over the region EE",

~R
of extent --

2

Since all the heat flowing into the annulus AE
is ultimately lost to the surroundings by the
peripheral surface, whose temperature rises from
bottom to top, it is clear that the inclination
of the lines of flow will increase as we move from E

d A Tl d· EE" ~R b .towar s . le istance ~ = -- _ell1g
'2

ordinarily much smaller than d, we may, to a
first approximation, assume that over this range cp
continues to increase according to the line MN,
which is an extrapolation of the straight line FM.
On this basis, we get, as in equation (19),

[
(~x) J

max periphery

It follows from equation 6(a) that

(d
2 <l2~ ) f(eS-ob) = 4d [ (~x) 1
2 <IX max periphery

Substitution of this result into equation (9)
gives us

~R E--=4> =-cld max K
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Comparison of this expression withequatiorts
(10) and (I I) then gives after a little algebra

d2 (Ed (r Ob-OO)= r+ -- (r-o) __+--
reduced 2K 2 Os-Ob

(V2 _ ~)) (~ + Ob-
OO

) (1-0) d 2,

1·5 2R 2 fls-flb

which simplifies sufficiently accurately to

where f1. I is approximately independent of d and is.
of the order of 0.1.


