will be of the order of 0.000,5. Since  $\Delta \ln \nu/\Delta T$  is of the order of 0.02, the error introduced by neglecting  $\beta$  in the above equation would be more than 1%, and cannot therefore be ignored. However, this correction has only a slow variation with temperature, and is readily applied by means of equation (13).

### Appendix III

# Correlation between the Activation Energy Graph and the I/v0.26 linear Plots

Essentially, the problem is to find the variation of  $\varepsilon'/k$  corresponding to a linear plot of  $1/v^{0.26}$  against temperature. Consider, for instance, the long second segment of the graph for B.O.C. "450" oil in Fig. 3. Its equation is

$$1/v^{0.25} = 0.16 + 0.0136 \text{ (T - To)},$$
 differentiation of which gives

$$-0.25 \sqrt{\frac{1.25 \, \rho_{V}}{\rho T}} = 0.0136,$$
whence  $\frac{\varepsilon}{k} \simeq -\frac{T^{2}}{\sqrt{\nu}} \frac{\rho_{V}}{\rho T} = T^{2} \times \frac{0.0136/0.25}{\nu - 0.25}$ 

$$= T^{2} \times \frac{0.0544}{0.16 + 0.0136(T - T_{0})}$$

Table 5 on page 118 gives the values of  $\frac{\epsilon/k}{1000}$  calculated from this relation over the range 30 °C. to 80 °C., together with the first differences. It is evident that the corresponding graph of  $\frac{\epsilon/k}{1000}$  against temperature will have a pronounced downward convexity, which is in agreement with the second mode of analysis of the  $\epsilon/k$  curves into segments.

### PRELIMINARY STRUCTURAL STUDY OF THE MAGNETIC FRACTION OF STEAM-TREATED MAKERWAL COAL

S. JAMAL QUADIR AND SADRUL HASAN RIZVI

Central Laboratories, Pakistan Council of Scientific and Industrial Research, Karachi

### Introduction

In the course of their studies in the desulphurization of Makerwal and other sulphuraceous coals of West Pakistan by treatment with super-heated steam, Siddiqui et al.<sup>1</sup> noted that the beneficiated coal residue contains 5 to 10% of a strongly magnetic component. This component could be removed by simple magnetic separation, and it was found that it carried away a considerable fraction of the residual sulphur, thus providing a basis for additional beneficiation of the coal. The present communication deals with an account of a preliminary investigation in the composition and structure of this magnetic fraction.

#### Two Possible Paramagnetic Compounds

Since it was known that the original coal contained both sulphur and iron, all the iron being

in the form of pyrites, it was at first thought that the magnetic property was due to the formation of compounds of the series FenSn+1, which are known to be strongly paramagnetic. Non-stoichiometric compounds of iron and sulphur, both ferromagnetic and paramagnetic, are known to occur naturally and have even been prepared synthetically; but they form a somewhat peculiar class of compounds and their structure and magnetic behaviour are not fully understood. FeS and FeS<sub>2</sub> are the two well-established compounds of iron with sulphur, but they are both nonmagnetic and have structures of the nickel-arsenide and pyritic types, respectively. The compounds,  $Fe_{0\cdot48}S_{0\cdot52}$  to  $Fe_{0\cdot466}S_{0\cdot534}$  (corresponding to  $Fe_{12}S_{13}$  to  $Fe_{7}S_{8}$  approximately), have been reported as being ferromagnetic in character, with a nickel-arsenide structure, whereas the compounds in the composition range between Fe<sub>0.50</sub>S<sub>0.50</sub> and Fe<sub>0.48</sub>S<sub>0.52</sub> (corresponding to FeS to Fe<sub>12</sub>S<sub>13</sub> approx.) are reported to be

paramagnetic, again with a nickel-arsenide structure in the high sulphur half of the field but with a superstructure in the region near the ideal composition FeS. M.J. Buerger's² work, however, throws doubt on the reported structures and it is not safe to say anything about the structure of  $\operatorname{Fe_nS_n} +_1$ , except that the reported structural studies indicate that the lattice of  $\operatorname{Fe_nS_n} +_1$  is substantially different from that of  $\operatorname{FeS_2}$ . So the conversion of  $\operatorname{FeS_2}$  into  $\operatorname{Fe_nS_n} +_1$  through any reaction of the type

FeS<sub>2</sub> (coal) + HOH (Steam) 
$$\xrightarrow{\text{at about } 300 \,^{\circ}\text{C.}}$$
  $\rightarrow$  Fe<sub>n</sub>S<sub>n+1</sub> + H<sub>2</sub>S

would be associated with a rather improbable structural transition.

The other simple compound of iron that has a high value of magnetic susceptibility is Fe<sub>3</sub>O<sub>4</sub>. However, the production of Fe<sub>3</sub>O<sub>4</sub> by simple superheated steam-treatment also seems somewhat unlikely, because the conversion of Fe<sub>5</sub> into Fe<sub>3</sub>O<sub>4</sub> is known to occur only at a temperature round about 500 °C., whereas the magnetic fraction under study was reported to have been obtained at a much lower temperature (around 350 °C.). Thus we have to decide between two possibilities, both of them apparently unlikely. This anomalous situation led to the present detailed study of the problem.

## **Chemical Analyses**

To begin with, an effective separation of the magnetic component from the adhering coal was attempted. It was done initially by the ordinary dry method with a magnet, but because of the "carrying-down" tendency of coal the separation

had to be carried out by the wet gravity method, followed by a further antigravity separation in the dry state by playing a magnet over a 250 mesh sieve. A magnetic fraction of reasonable "purity" was thus obtained. Preliminary chemical analyses of this fraction indicated that it does indeed contain sulphur and iron in large quantities with a comparatively small percentage of carbon. But this did not account for the total weight of the magnetic component, and there appeared to be a considerable quantity of oxygen in chemical combination. Two typical analyses of samples of the magnetic fraction are given in Table 1 together with the mean of half a dozen analyses.

From the above analyses it was clear that, compared with sulphur, the oxygen constitutes the major component of the magnetic fraction. Ignoring carbon as a mechanical impurity, the following approximate empirical formula could be derived from the above analyses:

From this, it appeared that the magnetic component is essentially an iron oxide with a small quantity of sulphur, either incorporated in the lattice or else adsorbed. The fact that the empirical formula approximates to Fe<sub>3</sub>O<sub>4</sub>, (the magnetic oxide), taken together with the high magnetizability of the material, gave considerable support to this idea.

There remained now the problem of the precise status of the sulphur in the iron oxide (probably Fe<sub>3</sub>O<sub>4</sub>) lattice comprising the magnetic fraction.

In order to examine this, repeated extractions of the sulphur were attempted in a Soxhlet ap-

TABLE I.—TYPICAL ANALYSES OF THE MAGNETIC FRACTION.

(Samples oven-dried at 105°C.)

|                        | Analysis I (weight %) | Analysis II<br>(weight %) | Mean of six<br>analyses<br>(weight %) | Mean weight % Atomic weight |
|------------------------|-----------------------|---------------------------|---------------------------------------|-----------------------------|
| Iron                   | <br>53.9              | 58.9                      | 56                                    | 1.00                        |
| Sulphur                | <br>5.1               | 8.2                       | 8                                     | 0.25                        |
| Carbon (by combustion) |                       | 13.0                      | 14                                    | 1.17                        |
| Oxygen (by difference) | 41.0                  | 19.9                      | 22                                    | 1.38                        |

paratus, using carbon tetrachloride as the solvent. It was found that each extraction removed successively smaller quantities of the sulphur, as indicated in Table 2.

TABLE 2.—Successive Extractions of Sulphur

(Initial Sulphur Content=8%)

Serial No. of extraction 1 2 3

Sulphur removed in this extraction (weight % of initial sample)

0.28 0.12 0.10

Total sulphur removed 0.28% 0.40% 0.50%

From this table, it may be estimated by extrapolation that, even after a very large number of such extractions, a fair quantity of sulphur (about 4%) would remain in the magnetic fraction. The conclusion suggested by this is that a portion of the sulphur is present in a non-extractable form, while the rest is only mechanically bound. However considering the fact that adsorbed sulphur is frequently very difficult to dislodge by extraction, further work for clarifying this point was taken up by X-ray diffraction, which presents perhaps the simplest way of determining whether or not the sulphur is chemically combined.

### X-ray Diffraction Analysis

For this analysis, it was necessary to take X-ray powder patterns of the magnetic component and to compare them with those of (i) FeS

(ii) Fe<sub>n</sub>S<sub>n+1</sub> (iii) Fe<sub>3</sub>O<sub>4</sub> (iv) Fe<sub>2</sub>O<sub>3</sub>, all of which can be suspected to contribute to the structure. Reproductions of these patterns are shown in Fig. 1, from which it is quite clear that the pattern of the magnetic fraction agrees only with that of Fe<sub>3</sub>O<sub>4</sub>. However, there is one noticeable difference in that there is an extra line of low intensity at d=2.71 A in our standard pattern of Fe<sub>3</sub>O<sub>4</sub>. This line coincides with the strongest line of the α-Fe<sub>2</sub>O<sub>3</sub> pattern (Table 3), and could be due to the well-known contamination of F<sub>3</sub>O<sub>4</sub> with small quantities of Fe<sub>2</sub>O<sub>3</sub>. By visual estimation of relative intensities, it was found that the Fe<sub>3</sub>O<sub>4</sub> sample prepared by us contained approximately 10% Fe<sub>2</sub>O<sub>3</sub>, which is a reasonable figure. Another possible explanation of the extra line could be that it is due to the presence of some γ-Fe<sub>2</sub>O<sub>3</sub>, the remaining lines of whose pattern are practically indistinguishable from those of Fe<sub>3</sub>O<sub>4</sub>, as can be seen in Table 3.

It follows from the above data that the magnetic fraction of the treated coal consists essentially of  $Fe_3O_4$ , with a possibility of some  $\gamma$ - $Fe_2O_3$ , but no detectable  $\alpha$ - $Fe_2O_3$ .

#### Conclusion

In the light of the foregoing observations, it may be concluded that the bulk of the pyritic material present in Makerwal coal is converted into  $Fe_3O_4$  by the previously reported process of high temperature steam treatment. The different stages of the reaction  $FeS_2 + H_2O$  (steam)  $\rightarrow Fe_3O_4$  are given in the literature,<sup>3</sup> and are reported to proceed as fo lows:—

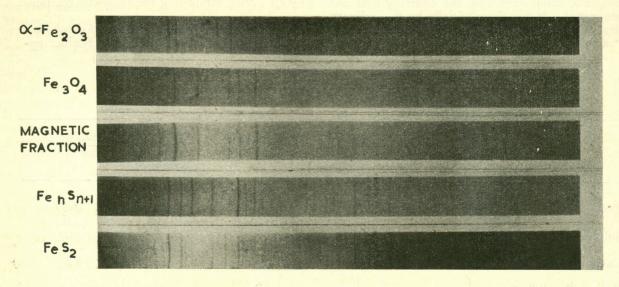



Fig. 1.—Comparative X-ray patterns for the structural analysis of the magnetic fraction.

(9 cm. powder Camera, Cu K α radiation)

Table 3.—The Prominent Powder Lines (having Intensities (I/I<sub>0</sub>) greater than 10%) of : (1)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, (2)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, (3) Fe<sub>3</sub>O<sub>4</sub> and (4) the Magnetic Fraction.

(The figures in brackets denote the intensities of the lines)

| Lines of α-Fe <sub>2</sub> O <sub>3</sub><br>(Angstroms) | Lines of γ-Fe <sub>2</sub> O <sub>3</sub> (Angstroms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lines of Fe <sub>3</sub> O <sub>4</sub> (Angstroms) | Observed lines in the magnetic fraction (Angstroms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SCHOOL STATE OF THE                                      | ver the district to help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3.68(70)                                                 | 2.95(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.97(28)                                            | 2.97(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 2.69(100)                                                | 2.78(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2.51(80)                                                 | 2.52(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53(100)                                           | 2.53(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2.20(70)                                                 | are supplied to the supplied t | 2.42(11)                                            | The state of the s |  |
| 2.07(10)                                                 | 2.08(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10(32)                                            | 2.10(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.837(70)                                                | 1.70(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.71(16)                                            | 1.70(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.691(80)                                                | 1.61(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.61(64)                                            | 1.61(40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.634(10)                                                | 1.48(53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.48(80)                                            | 1.48(60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1.596(40)                                                | 1.27(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.28(20)                                            | Literatural action of the comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 1.484(70)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.12(10)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.451(80)                                                | 1.09(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09(32)                                            | 1.095(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1.348(20)                                                | 3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05(10)                                            | 1.047(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1.309(40)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.255(30)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.224(10)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.205(10)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.187(30)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.160(30)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.137(40)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | The state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1.100(40)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1.053(50)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

FeS2-FeS+S

(cf. large quantities of H<sub>2</sub>S that are given off in our desulphurization process).

$$_3\text{FeS} + _4\text{HOH} \rightarrow \text{Fe}_3\text{O}_4 + _3\text{H}_2\text{S} + \text{H}_2$$

The occurrence of these reactions at a temperature of 350 °C. instead of the reported figure of 500 °C. may perhaps be attributed to the catalytic action of some other constituent of the coal.

There remains the possibility of the formation of small quantities of  $Fe_nS_{n+1}$  and  $\gamma$ - $Fe_2O_3$  in addition to  $Fe_3O_4$ . On the basis of the empirical formulae deduced earlier, viz.

$$Fe_3O_4+S$$
, or  $Fe_2$  (O,S)<sub>3</sub>,

it appears highly probable that the compound

formed is ferroso-ferric oxide. The pronounced ferromagnetism of the material does not however preclude the possibility of some \( \gamma - \text{Fe}\_2 O\_3 \), but the possibility of its formation in large quantities is ruled out by the fact that the diffraction patterns of γ-Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> do show certain differences (Table 3), and no trace of the 2.78A line of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> is observed in the pattern of the magnetic fraction (Fig. 1). The complete absence of  $Fe_nS_n + 1$  also cannot be claimed with any certainty as its presence to the extent of 5% could pass undetected because of the limitations of the available techniques. With improved methods, it is hoped subsequently to present a fuller description of the status of the sulphur contained in the magnetic fraction.

#### References

- 1. Siddiqui et al., Proc. 6th Pakistan Sci. Conf. Abstr. Chem. Sec. p. 52, 1954.
- 2. M.J. Buerger, Am. Mineralogist, **32**, 411 (1947).
- 3. E. Von Grunert, J. prakt. Chem. (N.S.), 122, 1 (1929).